
Tibidabo Documentation
Release 1.0.0

Architech

November 21, 2014

Contents

1 Notations 3

2 Chapters 5
2.1 Unboxing . 5
2.2 Quick start guide . 8
2.3 SDK Architecture . 39
2.4 Create SDK . 57
2.5 BSP . 58
2.6 Toolchain . 61
2.7 The board . 81
2.8 Add-ons . 90
2.9 FAQ . 91

i

ii

Tibidabo Documentation, Release 1.0.0

Version 1.0.1A

Copyright Architech

Date 28/01/2014

This documentation is old, you can find the last release: Here

Welcome to Tibidabo documentation!

Have you just received your Tibidabo board? Then you sure want to read the Unboxing Chapter first.

If you are a new user of the Yocto based SDK we suggest you to read the Quick start guide chapter, otherwise, if you
want to have a better understanding of specific topics, just jump directly to the chapter that interests you the most.

Furthermore, we encourage you to read the official Yocto Project documentation.

Contents 1

http://architechboards-tibidabo.readthedocs.org
https://www.yoctoproject.org/documentation

Tibidabo Documentation, Release 1.0.0

2 Contents

CHAPTER 1

Notations

Throughout this guide, there are commands, file system paths, etc., that can either refer to the machine (real or virtual)
you use to run the SDK or to the board.

Host
This box will be used to refer to the machine running the SDK

Board
This box will be used to refer to Tibidabo board

However, the previous notations can make you struggle with long lines. In such a case, the following notation is used.

If you click on select on the top right corner of these two last boxes, you will get the text inside the box selected. We
have to warn you that your browser might select the line numbers as well, so, the first time you use such a feature, you
are invited to check it.

Sometimes, when referring to file system paths, the path starts with /path/to. In such a case, the documentation is
NOT referring to a physical file system path, it just means you need to read the path, understand what it means, and
understand what is the proper path on your system. For example, when referring to the device file associated to your
USB flash memory you could read something like this in the documentation:

Since things are different from one machine to another, you need to understand its meaning and corresponding value
for your machine, like for example:

3

Tibidabo Documentation, Release 1.0.0

4 Chapter 1. Notations

CHAPTER 2

Chapters

2.1 Unboxing

This powerful board comes with this beautiful box

Tibidabo feeds its horses by means of an external power supply, which is included in the package and has several
socket adapters.

5

Tibidabo Documentation, Release 1.0.0

The SPI NOR on the board has been programmed to let Tibidabo boot a core-image-minimal image generated with
Yocto.

What are we waiting for? Lets boot the board!

1. First of all, make sure SW1 has this configuration

6 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

2. Connect the HDMI connector (CN8) to your monitor/television by means of an HDMI cable

3. Connect a USB keyboard to the board (connector CN18)

4. Take the socket adapter compatible with your country, plug it in the power adapter. When in position, you should
hear a slight click

5. Power on the board connecting the external power adapter to Tibidabo connector CN19

2.1. Unboxing 7

Tibidabo Documentation, Release 1.0.0

6. The login is root

Enjoy!

2.2 Quick start guide

This document will guide you from importing the virtual machine to debugging an Hello World! example on a
customized Linux distribution you will generate with OpenEmbedded/Yocto toolchain.

2.2.1 Install

The development environment is provided as a virtual disk (to be used by a VirtualBox virtual machine) which you
can download from this page:

Important: http://downloads.architechboards.com/sdk/virtual_machine/download.html

Important: Compute the MD5SUM value of the zip file you downloaded and compare it to the golden one you find
in the download page.

Uncompress the file, and you will get a .vdi file that is our virtual disk image. The environment contains the SDK for
all the boards provided by Architech, Tibidabo included.

Download VirtualBox

For being able to use it, you first need to install VirtualBox (version 4.2.10 or higher). You can get VirtualBox installer
from here:

https://www.virtualbox.org/wiki/Downloads

Download the version that suits your host operating system. You need to download and install the Extension Pack as
well.

Important: Make sure that the extension pack has the same version of VirtualBox.

Install the software with all the default options.

Create a new Virtual Machine

1. Run VirtualBox

8 Chapter 2. Chapters

http://downloads.architechboards.com/sdk/virtual_machine/download.html
https://www.virtualbox.org/wiki/Downloads

Tibidabo Documentation, Release 1.0.0

2. Click on New button

2.2. Quick start guide 9

Tibidabo Documentation, Release 1.0.0

3. Select the name of the virtual machine and the operating system type

10 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

4. Select the amount of memory you want to give to your new virtual machine

2.2. Quick start guide 11

Tibidabo Documentation, Release 1.0.0

5. Make the virtual machine use Architech’s virtual disk by pointing to the downloaded file. Than click on Create.

12 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Setup the network

We need to setup a port forwarding rule to let you (later) use the virtual machine as a local repository of packages.

Note: The virtual machine must be off

1. Select Architech’s virtual machine from the list of virtual machines

2.2. Quick start guide 13

Tibidabo Documentation, Release 1.0.0

2. Click on Settings

14 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

3. Select Network

4. Expand Advanced of Adapter 1

2.2. Quick start guide 15

Tibidabo Documentation, Release 1.0.0

5. Click on Port Forwarding

6. Add a new rule

16 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

7. Configure the rule

8. Click on Ok

2.2. Quick start guide 17

Tibidabo Documentation, Release 1.0.0

Customize the number of processors

Building an entire system from the ground up is a business that can take up to several hours. To improve the perfor-
mances of the overall build process, you can, if your computer has enough resources, assign more than one processor
to the virtual machine.

Note: The virtual machine must be off

1. Select Architech’s virtual machine from the list of virtual machines

2. Click on Settings

18 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

3. Select System

4. Select Processor

5. Assign the number of processors you wish to assign to the virtual machine

2.2. Quick start guide 19

Tibidabo Documentation, Release 1.0.0

Create a shared folder

A shared folder is way for host and guest operating systems to exchange files by means of the file system. You need
to choose a directory on your host operating system to share with the guest operating system.

Note: The virtual machine must be off

1. Select Architech’s virtual machine from the list of virtual machines

20 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

2. Click on Settings

2.2. Quick start guide 21

Tibidabo Documentation, Release 1.0.0

3. Select Shared Folders

4. Add a new shared folder

22 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

5. Choose a directory to share on your host machine. Make sure Auto-mount is selected.

2.2. Quick start guide 23

Tibidabo Documentation, Release 1.0.0

Once the virtual machine has been booted, the shared folder will be mounted under /media/ directory inside the virtual
machine.

2.2.2 Build

Important: A working internet connection, several GB of free disk space and several hours are required by the build
process

1. Select Architech’s virtual machine from the list of virtual machines inside Virtual Box application

24 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

2. Click on the icon Start button in the toolbar and wait until the virtual machine is ready

3. Double click on Architech SDK icon you have on the virtual machine desktop.

4. The first screen gives you two choices: ArchiTech and 3rd Party. Choose ArchiTech.

2.2. Quick start guide 25

Tibidabo Documentation, Release 1.0.0

5. Select Tibidabo as board you want develop on.

6. A new screen opens up from where you can perform a set of actions. Click on Run bitbake to obtain a terminal
ready to start to build an image.

26 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

7. Open local.conf file:

8. Go to the end of the file and add the following lines:

This will trigger the installation of a features set onto the final root file system, like tcf-agent and gdbserver.

9. Save the file and close gedit.

10. Build core-image-minimal-dev image by means of the following command:

At the end of the build process, the image will be saved inside directory:

11. Setup sysroot directory on your host machine:

Note: sudo password is: “architech“

2.2.3 Deploy

To deploy the root file system, you are going to need a micro SD card.

1. Copy the root file system to your SD card

Warning: Be very careful when you use dd to write to a device to pick up the right device, otherwise you can
mess up another disk you have on your machine, destroying its content forever!

Warning: The content of the SD card will be lost forever!

Important: Be sure you unmount the device from the filesystem before using dd program, you sure don’t want to
have the operating system interfere during the write process.

2. After dd completes, make sure everything has been really written to the SD card:

3. Unmount the micro SD card from your computer

2.2. Quick start guide 27

Tibidabo Documentation, Release 1.0.0

4. Plug the micro SD in the board socket.

2.2.4 Boot

First of all, make sure the board can boot entirely from the micro SD card by setting SW1 with this configuration

28 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Take the power socket adapter compatible with your country, plug it in the power adapter. When in position, you
should hear a slight click. Power on the board connecting the external power adapter to Tibidabo connector CN19.

Now it’s time to start the serial console.

On Tibidabo there is the dedicated serial console connector CN1

2.2. Quick start guide 29

Tibidabo Documentation, Release 1.0.0

which you can connect, by means of a mini-USB cable, to your personal computer.

Note: Every operating system has its own killer application to give you a serial terminal interface. In this guide, we
are assuming your host operating system is Ubuntu.

On a Linux (Ubuntu) host machine, the console is seen as a ttyUSBX device and you can access to it by means of an
application like minicom.

Minicom needs to know the name of the serial device. The simplest way for you to discover the name of the device is
by looking to the kernel messages, so:

1. clean the kernel messages

2. connect the mini-USB cable to the board already powered-on

3. display the kernel messages

3. read the output

As you can see, here the device has been recognized as /dev/ttyUSB0.

Now that you know the device name, run minicom:

If minicom is not installed, you can install it with:

then you can setup your port with these parameters:

30 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

If on your system the device has not been recognized as /dev/ttyUSB0, just replace /dev/ttyUSB0 with the proper device.

Once you are done configuring the serial port, you are back to minicom main menu and you can select exit.

Give root to the login prompt:

Board
tibidabo login: root

and press Enter.

Note: Sometimes, the time you spend setting up minicom makes you miss all the output that leads to the login and
you see just a black screen, press Enter then to get the login prompt.

2.2.5 Code

The time to create a simple HelloWorld! application using Eclipse has come.

1. Return to the Splashscreen, which we left on Tibidabo board screen, and click on Develop with Eclipse.

2. Go to File→ New→ Project, select C/C++→ C Project and press next button.

2.2. Quick start guide 31

Tibidabo Documentation, Release 1.0.0

3. Insert HelloWorld as project name, select Hello World ANSI C Autotools Project and press next button.

32 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

2.2. Quick start guide 33

Tibidabo Documentation, Release 1.0.0

4. Insert Author field and click on Finish button. Select Yes on the Open Associated Perspective? question.

5. Build the project by selecting Project→ Build All.

2.2.6 Debug

Use an ethernet cable to connect the board (connector CN16 Port P0) to your PC. Configure your workstation ip
address as 192.168.0.100. Make sure the board can be seen by your host machine:

If the output is similar to this one:

then the ethernet connection is ok. Enable the remote debug with Yocto by typing this command on Tibidabo console:

On the Host machine, follow these steps to let Eclipse deploy and debug your application:

• Select Run→ Debug Configurations...

• In the left area, expand C/C++Remote Application.

• Locate your project and select it to bring up a new tabbed view in the Debug Configurations Dialog.

• Insert in C/C++ Application the filepath (on your host machine) of the compiled binary.

• Click on New button near the drop-down menu in the Connection field.

• Select TCF icon.

34 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

• Insert in Host Name and Connection Name fields the IP address of the target board. (e.g. 192.168.0.10)

2.2. Quick start guide 35

Tibidabo Documentation, Release 1.0.0

• Then press Finish.

• Use the drop-down menu now in the Connection field and pick up the IP Address you entered earlier.

• Enter the absolute path on the target into which you want to deploy the cross-compiled application. Use the
Browse button near Remote Absolute File Path for C/C++Application: field. No password is needed.

36 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

• Enter also in the path the name of the application you want to debug. (e.g. Hello)

2.2. Quick start guide 37

Tibidabo Documentation, Release 1.0.0

• Select Debugger tab

• In GDB Debugger field, insert the filepath of gdb for your toolchain

• In Debugger window there is a tab named Shared Library, click on it.

38 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

• Add the libraries paths lib and usr/lib of the rootfs (which must be the same used in the target board)

• Click Debug to login.

• Accept the debug perspective.

Important: If debug does not work, check on the board if tcf-agent is running and gdbserver has been installed.

2.3 SDK Architecture

This chapter gives an overview on how the SDK has been composed and where to find the tools on the virtual machine.

2.3.1 SDK

The SDK provided by Architech to support Tibidabo is composed by several components, the most important of which
are:

• Yocto,

• Eclipse, and

• Qt Creator

Regarding the installation and configuration of these tools, you have many options:

1. get a virtual machine with everything already setup,

2. download a script to setup your Ubuntu machine, or

3. just get the meta-layer and compose your SDK by hand

The method you choose depends on your level of expertise and the results you want to achieve.

If you are new to Yocto and/or Linux, or simply you don’t want to read tons of documentation right now, we suggest
you to download and install the virtual machine because it is the simplest solution (have a look at VM content),
everything inside the virtual machine has been thought to work out of the box, plus you will get support.

If performances are your greatest concerns, consider reading Chapter Create SDK.

2.3.2 Virtual Machine

The development environment is provided as a virtual disk (to be used by a VirtualBox virtual machine) which you
can download from this page:

Important: http://downloads.architechboards.com/sdk/virtual_machine/download.html

Important: Compute the MD5SUM value of the zip file you downloaded and compare it to the golden one you find
in the download page.

Uncompress the file, and you will get a .vdi file that is our virtual disk image. The environment contains the SDK for
all the boards provided by Architech, Tibidabo included.

2.3. SDK Architecture 39

http://downloads.architechboards.com/sdk/virtual_machine/download.html

Tibidabo Documentation, Release 1.0.0

Download VirtualBox

For being able to use it, you first need to install VirtualBox (version 4.2.10 or higher). You can get VirtualBox installer
from here:

https://www.virtualbox.org/wiki/Downloads

Download the version that suits your host operating system. You need to download and install the Extension Pack as
well.

Important: Make sure that the extension pack has the same version of VirtualBox.

Install the software with all the default options.

Create a new Virtual Machine

1. Run VirtualBox

40 Chapter 2. Chapters

https://www.virtualbox.org/wiki/Downloads

Tibidabo Documentation, Release 1.0.0

2. Click on New button

3. Select the name of the virtual machine and the operating system type

2.3. SDK Architecture 41

Tibidabo Documentation, Release 1.0.0

4. Select the amount of memory you want to give to your new virtual machine

42 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

5. Make the virtual machine use Architech’s virtual disk by pointing to the downloaded file. Than click on Create.

2.3. SDK Architecture 43

Tibidabo Documentation, Release 1.0.0

Setup the network

We need to setup a port forwarding rule to let you (later) use the virtual machine as a local repository of packages.

Note: The virtual machine must be off

1. Select Architech’s virtual machine from the list of virtual machines

44 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

2. Click on Settings

2.3. SDK Architecture 45

Tibidabo Documentation, Release 1.0.0

3. Select Network

4. Expand Advanced of Adapter 1

46 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

5. Click on Port Forwarding

6. Add a new rule

2.3. SDK Architecture 47

Tibidabo Documentation, Release 1.0.0

7. Configure the rule

8. Click on Ok

48 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Customize the number of processors

Building an entire system from the ground up is a business that can take up to several hours. To improve the perfor-
mances of the overall build process, you can, if your computer has enough resources, assign more than one processor
to the virtual machine.

Note: The virtual machine must be off

1. Select Architech’s virtual machine from the list of virtual machines

2. Click on Settings

2.3. SDK Architecture 49

Tibidabo Documentation, Release 1.0.0

3. Select System

4. Select Processor

5. Assign the number of processors you wish to assign to the virtual machine

50 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Create a shared folder

A shared folder is way for host and guest operating systems to exchange files by means of the file system. You need
to choose a directory on your host operating system to share with the guest operating system.

Note: The virtual machine must be off

1. Select Architech’s virtual machine from the list of virtual machines

2.3. SDK Architecture 51

Tibidabo Documentation, Release 1.0.0

2. Click on Settings

52 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

3. Select Shared Folders

4. Add a new shared folder

2.3. SDK Architecture 53

Tibidabo Documentation, Release 1.0.0

5. Choose a directory to share on your host machine. Make sure Auto-mount is selected.

54 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Once the virtual machine has been booted, the shared folder will be mounted under /media/ directory inside the virtual
machine.

2.3.3 VM content

The virtual machine provided by Architech contains:

• A splash screen, used to easily interact with the boards tools

• Yocto/OpenEmbedded toolchain to build BSPs and file systems

• A cross-toolchain (derived from Yocto/OpenEmbedded) for all the boards

• Eclipse, installed and configured

• Qt creator, installed and configured

All the aforementioned tools are installed under directory /home/architech/architech_sdk, its sub-directories main
layout is the following:

tibidabo directory contains all the tools composing the ArchiTech SDK for Tibidabo board, along with all the infor-
mation needed by the splash screen application. In particular:

• eclipse directory is where Eclipse IDE has been installed

• java directory is where the Java Virtual Machine has been installed (needed by Eclipse)

• qtcreator contains the installation of Qt Creator IDE

2.3. SDK Architecture 55

Tibidabo Documentation, Release 1.0.0

• splashscreen directory contains information and scripts used by the splash screen application,

• sysroot is supposed to contain the file system you want to compile against,

• toolchain is where the cross-toolchain has been installed installed

• workspace contains the the workspaces for Eclipse and Qt Creator IDEs

• yocto is where you find all the meta-layers Tibidabo requires, along with Poky and the build directory

Splash screen

The splash screen application has been designed to facilitate the access to the boards tools. It can be opened by clicking
on its Desktop icon.

Once started, you can can choose if you want to work with Architech’s boards or with partners’ ones. For Tibidabo,
choose ArchiTech.

A list of all available Architech’s boards will open, select Tibidabo.

A list of actions related to Tibidabo that can be activated will appear.

56 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

2.4 Create SDK

If you have speed in mind, it is possible to install the SDK on a native Ubuntu machine (other Linux distributions may
support this SDK with minor changes but won’t be supported). This chapter will guide you on how to clone the entire
SDK, to setup the SDK for one board or just OpenEmbedded/Yocto for Tibidabo board.

2.4.1 Installation

Architech’s Yocto based SDK is built on top of Ubuntu 12.04 32bit, hence all the scripts provided are proven to work
on such a system.

If you wish to use another distribution/version you might need to change some script option and/or modify the scripts
yourself, remember that you won’t get any support in doing so.

Install a clone of the virtual machine inside your native machine

To install the same tools you get inside the virtual machine on your native machine you need to download and run a
system wide installation script:

where -g option asks the script to install and configure a few graphic customization, while -p option asks the script to
install the required packages on the machine. If you want to install the toolchain on a machine not equal to Ubuntu
12.04 32bit then you may want to read the script, install the required packages by hand, and run it without options.
You might need to recompile the Qt application used to render the splashscreen.

At the end of the installation process, you will get the same tools installed within the virtual machine, that is, all the
tools necessary to work with Architech’s boards.

2.4. Create SDK 57

Tibidabo Documentation, Release 1.0.0

Install just one board

If you don’t want to install the tools for all the boards, you can install just the subset of tools related to Tibidabo:

This script needs the same tools/packages required by machine_install

2.4.2 Yocto

The easiest way to setup and keep all the necessary meta-layers in sync with upstream repositories is achieved by
means of Google’s repo tool. The following steps are necessary for a clean installation:

1. Install repo tool, if you already have it go to step 4

2. Make sure directory ~/bin is included in your PATH variable by printing its content

3. If ~/bin directory is not included, add this line to your ~/.bashrc

4. Open a new terminal

5. Change the current directory to the directory where you want all the meta-layers to be downloaded into

6. Download the manifest

7. Download the repositories

By the end of the last step, all the necessary meta-layers should be in place, anyway, you still need to edit your
local.conf and bblayers.conf to compile for tibidabo machine and using all the downloaded meta-layers.

When you want your local repositories to be updated, just:

1. Open a terminal

2. Change the current directory to the directory where you ran repo init

3. Sync your repositories with upstream

If you really want to download everything by hand, just clone branch dora of meta-tibidabo:

and have a look at the README file.

To install Eclipse, Qt Creator, cross-toolchain, NFS, TFTP, etc., read Yocto/OpenEmbedded documentation, along
with the other tools one.

2.5 BSP

The Board Support Package is composed by a set files, patches, recipes, configuration files, etc. This chapter gives
you the information you need when you want to customize something, fix a bug, or simply learn how the all thing has
been assembled.

2.5.1 U-boot

The bootloader used by Tibidabo is u-boot. If you want to browse/modify the sources first you have to get them.
There are two viable ways to do that:

• if you already built Tibidabo’s bootloader with Bitbake, then you already have them on your (virtual) disk,
otherwise

• you can download and patch them.

58 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Bitbake will place u-boot sources under:

this means that within the virtual machine you will find them under:

We suggest you to don’t work under Bitbake build directory, you will pay a speed penalty and you can have troubles
syncronizing the all thing. Just copy them some place else and do what you have to do.

If you didn’t build them already with Bitbake, or you just want to make every step by hand, you can always get them
from the Internet by cloning the proper repository and checking out the proper commit:

and by properly patching the sources:

Now that you have the sources, you can start browsing the code from the following files:

Suppose you modified something and you want to recompile the sources to test your patches, well, you need a cross-
toolchain (see Cross compiler Section). If you are not working with the virtual machine, the most comfortable way to
get the toolchain is to ask Bitbake for it:

When Bitbake finishes, you will find an install script under directory:

Install the script, and you will get under the installation directory a script to source to get your environment almost in
place for compiling. The name of the script is:

Anyway, the environment is not quite right for compiling the bootloader and the Linux kernel, you need to unset a few
variables:

Ok, now you a working environment to compile u-boot, just do:

If you omit -j parameter, make will run one task after the other, if you specify it make will parallelize the tasks execution
while respecting the dependencies between them. Generally, you will place a value for -j parameter corresponding to
the double of your processor’s cores number, for example, on a quad core machine you will place -j 8.

Under the virtual machine, the toolchain is already installed under:

In the very same directory there is a file, environment-nofs, that you can source that takes care of the environment for
you when you want to compile the bootloader or the kernel

Once the build process is complete, you will find u-boot.imx file in your sources directory, that’s the file you need to
boot the board.

2.5.2 Linux Kernel

Like we saw for the bootloader, the first thing you need is: sources. Get them from Bitbake build directory (if you
built the kernel with it) or get them from the Internet.

Bitbake will place the sources under directory:

If you are working with the virtual machine, you will find them under directory:

We suggest you to don’t work under Bitbake build directory, you will pay a speed penalty and you could have
troubles syncronizing the all thing. Just copy them some place else and do what you have to do.

If you didn’t build them already with Bitbake or you just want to do make every step by hand, you can always get them
from the Internet by cloning the proper repository and checking out the proper hash commit:

and by properly patching the sources:

Now that you have the sources, you can start browsing the code from the following files:

Source the script to load the proper evironment for the cross-toolchain (see Cross compiler Section) and you are ready
to customize the kernel:

and to compile it:

2.5. BSP 59

Tibidabo Documentation, Release 1.0.0

If you omit -j parameter, make will run one task after the other, if you specify it make will parallelize the tasks execution
while respecting the dependencies between them. Generally, you will place a value for -j parameter corresponding to
the double of your processor’s cores number, for example, on a quad core machine you will place -j 8.

By the end of the build process you will get uImage under arch/arm/boot.

2.5.3 Meta Layer

A Yocto/OpenEmbedded meta-layer is a directory that contains recipes, configuration files, patches, etc., all needed
by Bitbake to properly “see” and build a BSP, a distrubution, a (set of) package(s), whatever. meta-tibidabo is a
meta-layer which defines the customizations to make to Freescale’s i.MX6 BSP and Yocto/OpenEmbedded in order to
get a working system, tailor made of Tibidabo.

You can get it with git:

The machine name for Tibidabo is tibidabo.

The strictly BSP related recipes are located under:

The other recipes are there just to customize other aspects of the system or to offer some facility to help you easily
manage some task, for example, working with flash memory or partitions.

Tibidabo is powered by a big serial NOR memory, big enough to place a full featured root file system inside of it.
However, you might not be interested in how to place the file system inside of it from the beginning and how to mount
and unmount it inside your file system. There is a recipe inside meta-tibidabo, tibidabo-flash-utils, that will install
three scripts inside the target file system to make the aforementioned tasks easy:

• tibidabo_fs2flash

• tibidabo_mount_flash

• tibidabo_umount_flash

tibidabo_fs2flash takes as input a .tar.bz2 file, cleans and formats the flash memory, and finally takes the file you gave
him to setup the root file system. For more information just run:

from Tibidabo shell.

tibidabo_mount_flash lets you mount the flash memory partition inside your filesystem (under /mnt/flash) without any
effort and, likewise, tibidabo_umount_flash helps you unmounting the partition.

Remember that to install those scripts inside the target, you need to add meta-openmbedded/meta-oe meta layer
to your bblayers.conf file. If you are working with Architech virtual machine, you don’t have to worry about that,
everything is already in place.

tibidabo-flash-utils won’t be placed by default inside your file system, if you want it you need to add a line like this
one to your local.conf file

Probably the most comfortable way, at least at the beginning, to build a valid SD card or SATA disk is to use file
.sdcard that Bitbake emits when builds an image. However, Bitbake prepares a final iso image to write to the medium
without any knowledge of its size. If you write the image on an SD card, for example, the first thing you notice is that
the file system does not fit the card. How do you resize partitions and file systems to get the best out of your device?
You have two possibilities:

1. put your SD card into your computer and use some tool, however, this option is available only on a Linux
machines, or

2. resize the file system directly on the target board.

meta-tibidabo has a recipe, tibidabo-resize-partition, that puts a script inside the target file system that does online
resizing of the last partition on the medium (that must be a primary partition), which can be an SD card, an mSATA
hard disk, or an USB memory stick. The script name is tibidabo_resize_partition, to see the help just type:

60 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

on Tibidabo’s console.

An example for resizing the SD card iso image generated by Bitbake, can be:

then follow the instructions, if any.

Even tibidabo-resize-partition won’t be placed by default inside the final root file system, unless you asks Bitbake for
it, by adding the following line to your build directory local.conf file:

2.5.4 Root FS

By default, Tibidabo’s Yocto/OpenEmbedded SDK will generate three different types of files when you build an image:

• .ext3,

• .tar.bz2, and

• .sdcard.

.ext3 is meant to be used by QEMU and won’t be discussed here. The .tar.bz2 file can be flattened out in your final
medium partition (on SD card, flash memory, mSATA disk or USB stick) or on your host development system and
used for build purposes with the Yocto Project. File .sdcard can be written out “as is” on the final medium with, for
example, dd program:

Where, the path to the image .sdcard file inside the SDK virtual machine is:

Warning: Be very careful when you use dd to write to a device to pick up the right device, otherwise you can
mess up another disk you have on your machine, destroying its content forever!

Warning: The content of the media will be lost forever!

Important: Be sure you unmount the device from the filesystem before using dd program, you sure don’t want to
have the operating system interfere during the write process.

After dd completes, run:

Generally, especially at the beginning, when you build an image for Tibidabo is more comfortable to create an SD card
using the .sdcard file, because you need almost zero effort to get everything running. However, if you need to develop
for a while on the board this solution turns out to be inefficient, and you will want a faster solution. Assuming you
already built an SD card out of a .sdcard file, you have an SD card with two partitions on it. The first one is supposed
to contain the kernel image (uImage file) and the bootscript file, the second partition is supposed to contain the root
file system. When you build a new file system you can delete everything contained on the second partition and you
can untar file .tar.bz2 to the second partition on the SD card. If you have built a new kernel just overwrite the old one
on the first partition. In case you have built a new bootloader take a look at Bootloader deploy.

2.6 Toolchain

Once your (virtual/)machine has been set up you can compile, customize the BSP for your board, write and debug
applications, change the file system on-the-fly directly on the board, etc. This chapter will guide you to the basic use
of the most important tools you can use to build customize, develop and tune your board.

2.6. Toolchain 61

Tibidabo Documentation, Release 1.0.0

2.6.1 Bitbake

Bitbake is the most important and powerful tool available inside Yocto/OpenEmbedded. It takes as input configuration
files and recipes and produces what it is asked for, that is, it can build a package, the Linux kernel, the bootloader, an
entire operating system from scratch, etc.

A recipe (.bb file) is a collection of metadata used by BitBake to set variables or define additional build-time tasks.
By means of variables, a recipe can specify, for example, where to get the sources, which build process to use, the
license of the package, an so on. There is a set of predefined tasks (the fetch task for example fetches the sources from
the network, from a repository or from the local machine, than the sources are cached for later reuses) that executed
one after the other get the job done, but a recipe can always add custom ones or override/modify existing ones. The
most fine-graned operation that Bitbake can execute is, in fact, a single task.

Environment

To properly run Bitbake, the first thing you need to do is setup the shell environment. Luckily, there is a script that
takes care of it, all you need to do is:

Inside the virtual machine, you can find oe-init-build-env script inside:

If you omit the build directory path, a directory named build will be created under your current working directory.

By default, with the SDK, the script is used like this:

Your current working directory changes to such a directory and you can customize configurations files (that the envi-
ronment script put in place for you when creating the directory), run Bitbake to build whatever pops to your mind as
well run hob. If you specify a custom directory, the script will setup all you need inside that directory and will change
your current working directory to that specific directory.

Important: The build directory contains all the caches, builds output, temporary files, log files, file system images...
everything!

The default build directory for Tibidabo is located under:

and the splash screen has a facility (a button located under Tibidabo’s page) that can take you there with the right
environment already in place so you are productive right away.

Configuration files

Configuration files are used by Bitbake to define variables value, preferences, etc..., there are a lot of them. At the
beginning you should just worry about two of them, both located under conf directory inside your build directory, we
are talking about local.conf and bblayers.conf.

local.conf contains your customizations for the build process, the most important variables you should be interested
about are: MACHINE, DISTRO, BB_NUMBER_THREADS and PARALLEL_MAKE. MACHINE defines the
target machine you want compile against. The proper value for Tibidabo is tibidabo:

DISTRO let you choose which distribution to use to build the root file systems for the board. The default distribution
to use with the board is:

BB_NUMBER_THREADS and PARALLEL_MAKE can help you speed up the build process.
BB_NUMBER_THREADS is used to tell Bitbake how many tasks can be executed at the same time, while
PARALLEL_MAKE contains the -j option to give to make program when issued. Both BB_NUMBER_THREADS
and PARALLEL_MAKE are related to the number of processors of your (virtual) machine, and should be set with a
number that is two times the number of processors on your (virtual) machine. If for example, your (virtual) machine
has/sees four cores, then you should set those variables like this:

62 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

bblayers.conf is used to tell Bitbake which meta-layers to take into account when parsing/looking for recipes, machine,
distributions, configuration files, bbclasses, and so on. The most important variable contained inside bblayers.conf is
BBLAYERS, it’s the variable where the actual meta-layers layout get specified.

All the variables value we just spoke about are taken care of by Architech installation scripts.

Command line

With your shell setup with the proper environment and your configuration files customized according to your board
and your will, you are ready to use Bitbake. The first suggestion is to run:

Bitbake will show you all the options it can be run with. During normal activity you will need to simply run a command
like:

for example:

Such a comman will build bootloader, Linux kernel and a root file system. core-image-minimal-dev tells Bitbake to
execute whatever recipe

tells it to do, so, you just place the name of the recipe without the extension.

Of course, there are times when you want more control over Bitbake, for example, you want to execute just one task
like recompiling the Linux kernel, no matter what. That action can be achieved with:

where -c compile states the you want to execute the do_compile task and -f forces Bitbake to execute the command
even if it thinks that there are no modifications and hence there is no need to to execute the same command again.

Another useful option is -e which gets Bitbake to print the environment state for the command you ran.

The last option we want to introduce is -D, which can be in fact repeated more than once and asks Bitbake to emit
debug print. The amount of debug output you get depend on many times you repeated the option.

Of course, there are other options, but the ones introduced here should give you an head start.

2.6.2 Hob

Hob is a graphical interface for Bitbake. It can be called once Bitbake environment has been setup (see Bitbake) like
this:

Host
hob

once open, you are required to select the machine you want to compile against

2.6. Toolchain 63

Tibidabo Documentation, Release 1.0.0

after that, you can select the image you want to build and, of course, you can customize it.

2.6.3 Eclipse

Eclipse is an integrated development environment (IDE). It contains a base workspace and the Yocto plug-in system to
compile and debug a program for Tibidabo. Hereafter, the operating system that runs the IDE/debugger will be named
host machine, and the board being debugged will be named target machine. The host machine could be running as a
virtual machine guest operating system, anyway, the documentation for the host machine running as a guest operating
system and as host operating system is exactly the same.

To write your application you need:

• a root file system filesystem (you can use bitbake/hob to build your preferred filesystem) with development
support (that is, it must include all the necessary libraries, header files, the tcf-agent program and gdbserver)
included

• a media with the root filesystem installed and, if necessary, the bootloader

• Tibidabo powered up with the aforementioned root file system

• a working serial console terminal

• a working network connection between your workstation and the board (connector CN16 Port P0), so, be sure
that:

1. your board has ip address 192.168.0.10 on interface pt0, and

2. your PC has an ip address in the same family of addresses, e.g. 192.168.0.100.

64 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Creating the Project

You can create two types of projects: Autotools-based, or Makefile-based. This section describes how to create
Autotools-based projects from within the Eclipse IDE. Launch Eclipse using Architech Splashscreen just click on
Develop with Eclipse.

To create a project based on a Yocto template and then display the source code, follow these steps:

• Select File→New→Project...

• Under C/C++, double click on C Project to create the project.

• Click on “Next” button

• Expand Yocto Project ADT Autotools Project.

• Select Hello World ANSI C Autotools Project. This is an Autotools-based project based on a Yocto Project
template.

2.6. Toolchain 65

Tibidabo Documentation, Release 1.0.0

66 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

• Put a name in the Project name: field. Do not use hyphens as part of the name.

• Click Next.

• Add information in the Author and Copyright notice fields.

• Be sure the License field is correct.

• Click Finish.

Note: If the “open perspective” prompt appears, click Yes so that you enter in C/C++ perspective. The left-hand
navigation panel shows your project. You can display your source by double clicking on the project source file.

• Select Project→Properties→Yocto Project Settings and check Use project specific settings

Building the Project

To build the project, select Project→Build Project. The console should update with messages from the cross-compiler.
To add more libraries to compile:

• Click on Project→Properties.

• Expand the box next to Autotools.

• Select Configure Settings.

• In CFLAGS field, you can add the path of includes with -Ipath_include

• In LDFLAGS field, you can specify the libraries you use with -lname_library and you can also specify the path
where to look for libraries with -Lpath_library

• Click on Project→Build All to compile the project

Note: All libraries must be located in /home/architech/architech_sdk/architech/tibidabo/sysroot subdirectories.

2.6. Toolchain 67

Tibidabo Documentation, Release 1.0.0

Deploying and Debugging the Application

Connect Tibidabo console to your PC and power-on the board. Once you built the project and the board is running the
image, use minicom to run tcf-agent program in target board:

On the Host machine, follow these steps to let Eclipse deploy and debug your application:

• Select Run→Debug Configurations...

• In the left area, expand C/C++ Remote Application.

• Locate your project and select it to bring up a new tabbed view in the Debug Configurations Dialog.

68 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

• Insert in C/C++ Application the filepath of your application binary on your host machine.

• Click on “New” button near the drop-down menu in the Connection field.

• Select TCF icon.

2.6. Toolchain 69

Tibidabo Documentation, Release 1.0.0

• Insert in Host Name and Connection Name fields the IP address of the target board. (e.g. 192.168.0.10)

70 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

• Press Finish.

• Use the drop-down menu now in the Connection field and pick the IP Address you entered earlier.

• Enter the absolute path on the target into which you want to deploy the application. Use Browse button near
Remote Absolute File Path for C/C++Application: field. No password is needed.

2.6. Toolchain 71

Tibidabo Documentation, Release 1.0.0

• Enter also in the path the name of the application you want to debug. (e.g. Hello)

72 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

• Select Debugger tab

• In GDB Debugger field, insert the filepath of gdb for your toolchain

• In Debugger window there is a tab named Shared Library, click on it.

2.6. Toolchain 73

Tibidabo Documentation, Release 1.0.0

• Add the libraries paths lib and usr/lib of the rootfs (which must be the same used in the target board)

• Click Debug to bring up a login screen and login.

• Accept the debug perspective.

Important: If debug does not work, check on the board if tcf-agent is running and gdbserver has been installed.

2.6.4 Qt Framework

The Qt Framework used by this SDK is composed of libraries for your host machine and your target. To compile the
libraries for x86 you only need your distribution toolchain, while to compile the libraries for Tibidabo board you need
the proper cross-toolchain (see Chapter Cross compiler for further information on how to get it).

This section just wants to show you how the framework has been generated.

Before to begin, keep in mind you might need to install the following package to compile yourself the libraries under
Ubuntu

So, to install qt-everywhere for x86 from sources, the usual drill of download, uncompress, configure, make and make
install is required:

The installation of the libraries for Tibidabo from sources is sligthly more complicated. Once you downloaded and
uncompressed the sources

you need to customize qmake configuration

save the file and exit from gedit, then configure, make and make install

A comfortable tool to get your job done with Qt is Qt Creator, which its use will be introduced in Section Qt Creator.
You can download it from here:

Tip: http://sourceforge.net/projects/qtcreator.mirror/files/Qt%20Creator%202.8.1/qt-creator-linux-x86-opensource-
2.8.1.run/download

2.6.5 Qt Creator

Qt is a cross-platform application framework that is used to build applications. One of the best features of Qt is its
capability of generating Graphical User Interfaces (GUIs).
Qt Creator is a cross-platform C++ IDE which includes a visual debugger, an integrated GUI layout and form
designer. It makes possible to compile and debug applications on both x86 (host) and ARM (target) machines.
This SDK relies on version 4.8.5 of Qt and version 2.8.1 of Qt Creator.

74 Chapter 2. Chapters

http://sourceforge.net/projects/qtcreator.mirror/files/Qt%20Creator%202.8.1/qt-creator-linux-x86-opensource-2.8.1.run/download
http://sourceforge.net/projects/qtcreator.mirror/files/Qt%20Creator%202.8.1/qt-creator-linux-x86-opensource-2.8.1.run/download

Tibidabo Documentation, Release 1.0.0

Before getting our hands dirty, make sure all these steps have been followed:

1. Use Hob or Bitbake to build an image which includes: openssh, support for C++, tcf-agent and gdbserver.

Note: You could build qt4e-demo-image if you want to see the demo of Qt. Just remember to complete its file system
with tcf-agent, gdbserver and openssh.

2. Deploy the root file system just generated on the final media used to boot the board

3. Replicate the same root file system into directory

4. Copy the Qt Libraries to the board media used to boot

5. Copy the Qt Libraries to your sdk sysroot directory

6. Unmount the media used to boot the board from your computer and insert it into the board

7. Power-On the board

8. Open up the serial console.

If you based your root file system on qt4e-demo-image, be sure you execute this command

to stop the execution of the demo application.

9. Provide a working network connection between your workstation and the board (connector CN16 Port P0), so,
be sure that:

1. your board has ip address 192.168.0.10 on interface pt0, and

2. your PC has an ip address in the same family of addresses, e.g. 192.168.0.100.

Hello World!

The purpose of this example project is to generate a form with an “Hello World” label in it, at the beginning on the
x86 virtual machine and than on Tibidabo board.

To create the project follow these steps:

1. Use the Welcome Screen to run Qt Creator by selecting Architech→Tibidabo→Develop with Qt Creator

2.6. Toolchain 75

Tibidabo Documentation, Release 1.0.0

2. Go to File -> Open File or Project to open QtHelloWorld.pro file located in
/home/architech/architech_sdk/architech/tibidabo/workspace/qt/QtHelloWorld/ directory.

3. Click on “QtHelloWorld” icon to open project menu.

4. Select the build configuration: Desktop - Debug.

76 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

5. To build the project, click on the bottom-left icon.

6. Once you built the project, click on the green triangle to run it.

7. Congratulations! You just built your first Qt application for x86.

2.6. Toolchain 77

Tibidabo Documentation, Release 1.0.0

In the next section we will debug our Hello World! application directly on Tibidabo.

Debug Hello World project

1. Select build configuration: tibidabo - Debug and build the project.

2. Copy the generated executable to the target board (e.g /home/root/).

3. Use minicom to launch gdbserver application on the target board:

4. In Qt Creator, open the source file main.cpp and set a breakpoint at line 6. | To do this go with the mouse at line
6 and click with the right button to open the menu, select Set brackpoint at line 6

78 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

5. Go to Debug→Start Debugging→Attach To Remote Debug Server, a form named “Start Debugger” will appear,
insert the following data:

• Kit: tibidabo

• Local executable:

Press OK button to start the debug.

6. The hotkeys to debug the application are:

• F10: Step over

• F11: Step into

• Shift + F11: Step out

• F5: Continue, or press this icon:

7. To successfully exit from the debug it is better to close the graphical application from the target board with the
mouse by clicking on the ‘X’ symbol.

2.6. Toolchain 79

Tibidabo Documentation, Release 1.0.0

2.6.6 Cross compiler

Yocto/OpenEmbedded can be driven to generate the cross-toolchain for your platform. There are two common ways
to get that:

or

The first method provides you the toolchain, you need to provide the file system to compile against, the second method
provides both the toolchain and the file system along with -dev and -dbg packages installed.

Both ways you get an installation script.

The virtual machine has a cross-toolchain installed for each board, each generated with meta-toolchain. To use it just
do:

to compile Linux user-space stuff. If you want to compile kernel or bootloader then do:

and you are ready to go.

2.6.7 Opkg

Opkg (Open PacKaGe Management) is a lightweight package management system. It is written in C and resembles
apt/dpkg in operation. It is intended for use on embedded Linux devices and is used in this capacity in the
OpenEmbedded and OpenWrt projects.

Useful commands:

• update the list of available packages:

• list available packages:

• list installed packages:

• install packages:

• list package providing <file>

• Show package information

• show package dependencies:

• remove packages:

Force Bitbake to install Opkg in the final image

With some images, Bitbake (e.g. core-image-minimal) does not install the package management system in the final
target. To force Bitbake to include it in the next build, edit your configuration file

and add this line to it:

80 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Create a repository

opkg reads the list of packages repositories in configuration files located under /etc/opkg/. You can easily setup a new
repository for your custom builds:

1. Install a web server on your machine, for example apache2:

2. Configure apache web server to “see” the packages you built, for example:

3. Create a new configuration file on the target (for example /etc/opkg/my_packages.conf) containing lines like this
one to index the packages related to a particular machine:

To actually reach the virtual machine we set up a port forwarding mechanism in Chapter Virtual Machine so that every
time the board communicates with the workstation on port 8000, VirtualBox actually turns the communication directly
to the virtual machine operating system on port 80 where it finds apache waiting for it.

4. Connect the board and the personal computer you are developing on by means of an ethernet cable

5. Update the list of available packages on the target

Update repository index

Sometimes, you need to force bitbake to rebuild the index of packages by means of:

2.7 The board

This chapter introduces the board, its hardware and how to boot it.

2.7.1 Hardware

The hardware documentation of Tibidabo can be found here:

http://downloads.architechboards.com/doc/Tibidabo/download.html

2.7.2 Power-On

Tibidabo takes the power from connector CN19. The board is shipped with an external power adapter.

2.7. The board 81

http://downloads.architechboards.com/doc/Tibidabo/download.html

Tibidabo Documentation, Release 1.0.0

To assemble it, take the power socket adapter compatible with your country, plug it in the power adapter.

82 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

When in position, you should hear a slight click.

2.7. The board 83

Tibidabo Documentation, Release 1.0.0

To power-on the board, just connect the external power adapter to Tibidabo connector CN19.

2.7.3 Serial Console

On Tibidabo there is the dedicated serial console connector CN1

which you can connect, by means of a mini-USB cable, to your personal computer.

Note: Every operating system has its own killer application to give you a serial terminal interface. In this guide, we
are assuming your host operating system is Ubuntu.

On a Linux (Ubuntu) host machine, the console is seen as a ttyUSBX device and you can access to it by means of an
application like minicom.

Minicom needs to know the name of the serial device. The simplest way for you to discover the name of the device is
by looking to the kernel messages, so:

1. clean the kernel messages

2. connect the mini-USB cable to the board already powered-on

3. display the kernel messages

3. read the output

84 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

As you can see, here the device has been recognized as /dev/ttyUSB0.

Now that you know the device name, run minicom:

If minicom is not installed, you can install it with:

then you can setup your port with these parameters:

If on your system the device has not been recognized as /dev/ttyUSB0, just replace /dev/ttyUSB0 with the proper device.

Once you are done configuring the serial port, you are back to minicom main menu and you can select exit.

2.7.4 Let’s boot

The boot process of an i.MX6 processor is quite complex. After a Power On Reset (POR) the processor starts executing
the internal ROM program. The boot mode is based on the binary value stored in the internal BOOT_MODE register:

BOOT_MODE[1:0] Boot Type
00 Boot from fuses
01 Serial downloader
10 Internal boot
11 Reserved

BOOT_MODE[1] is read from SRC_BOOT_MODE1 pin (F12). BOOT_MODE[0] is read from
SRC_BOOT_MODE0 pin (C12).

On Tibidabo, switches 1 and 2 of SW1 let you define the values for BOOT_MODE register:

• SW1 switch 1 controls BOOT_MODE[0]

• SW1 switch 2 controls BOOT_MODE[1]

2.7. The board 85

Tibidabo Documentation, Release 1.0.0

in the image BOOT_MODE[1:0] = 10 (Internal boot).

The other switches of SW1 are used for Internal boot mode and will be explained later in this chapter.

eFUSEs

eFUSEs are One Time Programmable (OTP) devices. The On-Chip OTP Controller (OCOTP_CTRL) manages
reads/writes from/to eFUSEs and memory mapping of the values by means of shadow registers. You can blow the
fuses by means of u-boot fuse command, be very careful because fuses are one time programmable only, a mistake
will last forever! However, even if you manage to brik the board, you can always use it with the Serial downloader
boot mode.

86 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Boot from FUSEs

In boot from fuses mode the boot ROM uses the fuses values to decide how to boot. The boot flow is controlled by
BT_FUSE_SEL eFUSE:

• if 1 the boot ROM will load the bootloader according to the state of eFUSEs,

• if 0 (the device has not yet been programmed) the boot ROM will jump to serial downloader mode.

Tibidabo is shipped with no fuse blown so you can blow the fuses when you think you are ready.

For example, to instruct the processor to boot from SD card you can blow the following fuses with u-boot fuse
command:

where, the first command setup the boot from sd card, while the second command sets BT_FUSE_SEL = 1.

Again, if you want to instruct the processor to boot from SPI NOR you can blow the following fuses:

where the first command setup the boot from serial ROM, and the second command sets BT_FUSE_SEL = 1.

Serial Downloader

Serial downloader boot mode tells the processor’s boot ROM to load registers configuration and bootloader from USB.
To work with this boot mode you need a micro USB cable to connect the board (connector CN4) to your Personal
Computer and a software installed on your PC, speaking of which, if you have a Microsoft Windows operating system
you need Freescale’s i.MX6 Manufacturing Tool that can be downloaded from:

http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=IMX6_SW

If you have a Linux operating system instead, you need Boundary Devices imx_usb_loader tool that can be obtained
from their git repository:

git://github.com/boundarydevices/imx_usb_loader

To compile imx_usb_loader project you need libusb installed on your distribution. This is the set of commands needed
on an Ubuntu machine to setup the tool:

Once the tool is ready, power up the board, then you can download your u-boot.imx on the board with this command:

Internal Boot

If BT_FUSE_SEL = 1 then all boot options are controlled by the eFUSEs, otherwise, if BT_FUSE_SEL = 0 then
specific boot configuration parameters may be set using GPIO pins rather than eFUSEs. The use of GPIOs is intended
for development only. If an error occurs, the boot ROM jumps to serial downloader boot mode. On Tibidabo, SW1
switches 3, 4, 5, 6 (along with a set of jumpers available on the bottom side of the board) can define a custom boot
mode so you can simulate your configuration before blowing fuses.

SW1[6:3] = BOOT_CFG[24]-BOOT_CFG1[6:4] Boot Device
1100 SD regular boot
1101 SD fast boot
0011 Serial NOR
0010 SATA

For example, this is the selection of the boot from SD card (fast boot)

2.7. The board 87

Tibidabo Documentation, Release 1.0.0

Bootloader deploy

When you boot with serial downloader, you just do:

but when you boot from fuses or you want to use the internal boot you need to understand where the processor looks
for the bootloader binary. If you want to boot from SPI NOR, you need to write the bootloader binary (u-boot.imx) to
the flash memory. You can do it with from u-boot or from Linux as well. To do it from u-boot, you first need to read
into memory a valid bootloader binary (from ethernet, SD card, mSATA or USB), then:

where loadaddr is an environment variable where the memory load address is defined, and filesize is the size of file
u-boot.imx that has been previously loaded to memory. Be careful, by default the bootloader is configured to save the
environment inside the SD card, not in the flash itself. If you prefer to save the environment inside the SPI NOR, open

88 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

u-boot file:

define macro CONFIG_ENV_IS_IN_SPI_FLASH by uncommenting it, comment CONFIG_ENV_IS_IN_MMC
definition, and recompile the bootloader.

In case you want to boot from SD card, you need to write the bootloader starting at address 1024 on the medium,
just inside the MBR gap. The first partition on the medium must start at an address that leaves enough room for
then bootloader and its environment variables, block 8192 (with block size of 512) will be more then enough (the
environment gets written/read on the SD card with an offset of 384KB and will be 8KB large). Good, but how do you
write your u-boot binary on the SD card? If you do not care to customize the bootloader, and you built an image with
Yocto/OpenEmbedded, you may have noticed that under the directory where Yocto/OpenEmbedded puts all the built
images there is a file with extension .sdcard. Well, such a file is an iso and can be written as is to the SD card device,
just:

Once the iso has been written, the SD card will have all you need to make it boot from it (it will have bootloader,
kernel image, file system and kernel modules). Ok, but what if you want to rewrite just the bootload and not the all
image? You can overwrite the bootloader on the SD card always with dd:

Bootscript

Once the bootloader has been properly deployed (see Bootloader deploy), you turn on the board, the bootloader gets
loaded and starts running until it gets to the boot command. What happens next? Well, since the board have a lot of
options from where to load the kernel and with which options run the kernel, where is the root file system, which video
mode, etc..., you get the best result if you have a simple facility to customize the system boot process yourself instead
of having a milion combinations script that doesn’t do exactly what you want it to do. The facility we are talking about
is a simple u-boot script that the default boot command tries to load from, in order, mSATA, SD and tftp. When u-boot
finds it, the script gets executed. That’s it. Here is an example of an u-boot script that tries to load the Linux kernel
binary from the SD card first partition (the partition can be FAT, EXT2, EXT3 or EXT4), and tells the kernel to use
the second partition of the SD card as root partition:

But that is an u-boot script, not the bootscript, to make it suitable as a bootscript you need to give it mkimage as input
first. If you are not that comfortable with mkimage, you can have a simplified interface offered by create-bootscript.sh
script. The usage is very simple, just run it like this:

where parameter -i stands for source file to take as input and -o stands for “binary” file to emit as output.

Copy the output file to where you want it to be found, that is:

• SD card, first or second partition in the root director

• mSATA, first or second partition in the root directory, or

• TFTP directory on your computer.

Important: Name the script exactly bootscript

2.7.5 Video modes

Tibidabo has three possible video outputs:

• HDMI via connector CN8

• LVDS via connector CN3, thought for SAMSUNG’s MODEL LTI460HN08 (connector pad numeration is re-
versed with respect to SAMSUNG monitor datasheet to direct use of a flat ribbon lvds cable)

• LVDS via display port connector CN22, meant for SILICA lvds display

2.7. The board 89

Tibidabo Documentation, Release 1.0.0

Warning: Do not connect CN22 to DISPLAY PORT devices, CN22 uses just the connector of a DISPLAY PORT
but the signals are meant to work just with Silica’s LCD (LVDS) displays.

If you want to boot using SILICA’s lcd as the only video output device you need to add to the kernel command line
something like:

video=mxcfb0:dev=ldb,LDB-WVGA,if=RGB666 ldb=dul0

If you want to boot using SAMSUNG’s display as the only video output device you need to add to the kernel command
line something like:

video=mxcfb0:dev=ldb,LDB-1080P60,if=RGB666 ldb=spl0

If you want to boot using a full HD HDMI display as the only video output device you need to add to the kernel
command line something like:

video=mxcfb0:dev=hdmi,1920x1080M@60,if=RGB24

You can have a video output on more than one device and the resolutions stated before are not the only resolutions
available. Keep also into account that the LVDS output has several working modes, like: spl, dul, sin, sep (please,
have a look at /drivers/video/mxc/ldb.c).

2.7.6 Network

Tibidabo networking is powered by MARVELL Gigabit switch MV88E6123. On the board there is a dual ethernet
connector, each connector has a name that is printed on the PCB (P0 and P1). The switch is supported both by u-boot
and Linux kernel, however, u-boot support is limited so, if you need u-boot to load files from the network use just one
of the two ports. Under Linux, instead, the default network configuration is:

but if you take a closer look, you discover that there are more interfaces available:

where pt0 is the network inteface corresponding to connector P0, while pt1 is the network interface corresponding to
connector P1.

eth0 has a random MAC address assigned and, as you can see, pt0 and pt1 have the same address. To properly use
the network you need to be sure that pt0 and pt1 have unique MAC addresses. You can change the MAC address of a
specific network interface by means of this command:

substitute <port> with pt0 or pt1, and <new mac address> with the MAC address you decided to assign.

If you want that configuration to be brought up at boot you can add a few line in file /etc/network/interfaces, for
example, if you want pt0 to have a fixed ip address (say 192.168.0.10) and MAC address of value 1e:ed:19:27:1a:b6
you could add the following lines:

You can, of course, define the default configuration for pt1 as well.

2.8 Add-ons

2.8.1 Huawei MU609

MU609 is high-quality designed HSPA module in small size and Huawei standard LGA form factor which is specially
designed for industrial-grade M2M applications such as vehicle telematics, tracking, mobile payment, industrial router,
safety monitor and industrial PDAs. Tibidabo sources can be easily updated to support MU609.

90 Chapter 2. Chapters

Tibidabo Documentation, Release 1.0.0

Download the kernel patch and the configuration fragment to ~/Documents. Be sure you followed the guide on
Tibidabo linux kernel, and once you have prepared the kernel sources to be compiled by hand you can apply the
patches:

To make the device work properly, make sure the Linux kernel is configured according to the configuration fragment
file (~/Documents/huawei-mu609.cfg) you just downloaded.

Note: The patches have been tested with module MU609 programmed with firmware version 12.105.29.00.00

2.9 FAQ

2.9.1 Virtual Machine

What is the password for the default user of the virtual machine?

The password for the default user, that is architech, is:

Host
architech

What is sudo?

sudo is a program for Unix-like computer operating systems that allows users to run programs/commands with the
security privileges of another user, normally the superuser or root. Not all the users can call sudo, only the sudoers,
architech (the default user of the virtual machine) user is a sudoer. When you run a command preceeded by sudo
Linux will ask you the user password, for architech user the password is architech.

What is the password for user root?

By default, Ubuntu 12.04 32bit comes with no password defined for roor user, to set it run the following command:

Host
sudo passwd root

Linux will ask you (twice, the second time is just for confirmation) to write the password for user root.

2.9.2 Tibidabo

2.9. FAQ 91

Tibidabo Documentation, Release 1.0.0

92 Chapter 2. Chapters

Index

D
Debug, 68

P
Project, 64

93

	Notations
	Chapters
	Unboxing
	Quick start guide
	SDK Architecture
	Create SDK
	BSP
	Toolchain
	The board
	Add-ons
	FAQ

